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Abstraet--A heat transfer problem is solved, first for an infinitely long heated cylinder and then for a small 
heated sphere, each freely suspended in a general linear flow at Reynolds numbers Re ,~ 1. Asymptotic 
solutions to the convection problem are developed for very large values of the P6clet number Pc, and 
expressions are obtained for the asymptotic Nusselt number for two-dimensional flows ranging from solid 
body rotation to hyperbolic flow. Since the objects in these cases are surrounded by a region of effectively 
isothermal closed streamlines, the asymptotic Nusselt number becomes independent of the P6clet number in 
the limit Pe-* oo. 

1. INTRODUCTION 

Many empirical models have appeared in the literature, which relate the Nusselt number Nu to 
the P6clet number Pe and Reynolds number Re for a variety of flows, and which can be used to 
predict heat and mass transfer rates from spheres and cylinders suspended in low Reynolds 
number velocity fields. The theoretical effort has been directed to the cases of uniform flow and 
simple shear flow at infinity, and has led to the development of asymptotic expressions valid as 
Pe ~ 0  and as Pe ~ ~. For low values of Pc, the asymptotic Nusselt number for the ease of 
uniform flow is O[(ln Pe)-'] for small cylinders and is equal to 2 + O(Pe)  for small spheres. 
Similarly, for the ease of a small particle freely rotating in a simple shear, the asymptotic Nusselt 
number for Pe ~ 0  is still O[(ln Pc)-1)] for small cylinders but becomes 2 + O(Pe m) for small 
spheres. Thus, the main features of heat and mass transfer in low Reynolds number flow regimes 
can be inferred from these asymptotic expressions as Pe ~ O. 

On the other hand, for asymptotically large P~clet numbers, Frankel & Acrivos (1968) showed 
that the Nusselt number for heat transfer from an isothermal cylinder freely rotating in a low 
Reynolds number simple shear becomes independent of the magnitude of the shear and 
approaches a constant value of 5.73. This result was then confirmed experimentally by Robertson 
& Acrivos (1970). Also, Aerivos (1971) solved the corresponding sphere problem using an 
approximate method and found that the asymptotic Nusselt number for Pe ~ o~ is 9. This is in 
contrast to the ease of low Reynolds number uniform flow past a stationary particle where it is 
well-known that Nu becomes O(Pe 1~3) for asymptotically large P~elet numbers (cf. Acrivos & 
Taylor 1962). The distinguishing factor between these two cases is that for a simple shear, a freely 
rotating particle is completely surrounded by a region of isothermal closed streamlines, across 
which heat is transferred to the main stream by conduction alone, thereby insuring that the 
asymptotic Nusselt number is independent of Pc, as Pe -~ ~. But, in the case of uniform flow, 
where, the streamlines emanate from upstream infinity, the transport of heat takes place, both by 
conduction and convection, across a thermal boundary layer of thickness O (Pe-l~3) adjacent to 
the particle surface. Thus, at high P6clet numbers, heat transfer rates from a particle to a 
surrounding fluid depend primarily on the structure of the flow near the heated particle, i.e. they 
depend on whether the streamlines near the particle are open or closed. 

So far, in the case of shear flows, attention has been directed to particles rotating in a simple 
shear. Clearly though, the corresponding heat transfer problem for a cylinder and a sphere freely 
rotating in any general linear flow would be worth investigating. This will be the aim of the 
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present analysis which will be restricted to values of Re ~ 1 and will focus on the development of 
asymptotic solutions to the convection problem for Pe ~ ~. 

It would be expected, of course, that the results to be presently derived would be similar to 

those found in the case of a simple shear, the difference being, though, that the Nusselt number 
should now depend directly on the parameters of the flow field. Specifically, denoting the 

freestream rate of strain tensor by e',j and the freestream vorticity vector by oJ'i, we would expect 

that, for the case of low Reynolds number flows, N u  = f(e',j, ~o',) as Pe ~ ,  where Nu,  being a 
scalar quantity, must be a function of the five scalar invariants of e',j and ~o',: 

11 = (e'i;e'~j) '/2, I2 = ]det e'~j]", L = (e'ike~kt.o'ito'j) j/4, 

I ,  = }e',o~',o~l:', 15 = (~o;o/,) "2. 

[].l] 

Note that absolute values are used for 12 and/4, since the Nusselt number is invariant to flow 
reversal, and that each Ij has the same dimensions (units of reciprocal time). Moreover, since at 

low Reynolds numbers both the flow pattern and the asymptotic Nusselt number are not affected 
by multiplying the flow velocities (and hence, e'~j and o)9 by a constant, Nu must be a function of 

the ratios of the invariants to, say 15; or 

N u  = f ( J , , J 2 ,  J3, J4), [1.2] 

where J, ==- L/I5.  As stated previously, at low Reynolds numbers, N u  is independent of the P6clet 

number only for those linear flows which produce a region of closed streamlines surrounding the 

particle, a condition that is satisfied if I5 # 0. 

2. STATEMENT OF THE PROBLEM 

The dimensionless energy equation in Cartesian coordinates is 

aT 1 a2T 
u, - [2.1] 

Ox, Pe OxjOxj ' 

where u, is the velocity vector divided by 212a, a is the radius of the cylinder or sphere in terms 
of which all lengths are rendered dimensionless, 21) is a characteristic freestream vorticity to be 

defined below, T is the dimensionless temperature and Pe is the P6clet number Reef, with Re 

being the Reynolds number 2D, a2/v  and e the Prandtl number. The boundary conditions are 

T = I  at r = 1, 

T ~ 0  at r - ~ ,  

[2.2] 

where r =-(x,x,) '/2. It can be seen from [2.1] that, as Pe ~ ,  the streamlines become isothermal, 
but since conduction is the primary mode of heat transport when the streamlines are closed and 
isothermal, it is necessary to take the conduction terms into account in solving [2.1] as Pe ~ ~.  As 
shown by Acrivos (1971), this is accomplished by multiplying both sides of [2.1] by dt, t denoting 

time, and integrating along a closed streamline. Thus, 

= Pe  U,~x ~ dt  = Pe  dt  = O, [2.31 

for all closed streamlines and for all Pe. Equation [2.3] will be used extensively in solving for the 
temperature distributions near the particle surface. However, the quantity of most interest here is 
the Nusselt number N u  which, based on the particle diameter 2a, takes the forms 
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l f~=-(aT) d~, 
N u  =#. to  -~- r=l 

[2.4] 

for the cylinder, where cylindrical coordinates (r, ~p) are used, and 

1 ( ~ = f  ~ (aT'} sin 
Nu=2-~Jo J o - \ - ~ r / r = l  0d0d~,  [2.5] 

for the sphere in terms of the spherical coordinates (r, 0, ¢). 
In a linear flow field, if the Reynolds number is sufficiently small to allow inertia effects to be 

neglected, the complete fluid velocity u, must satisfy 

a2u, = a___p_p [2.6a] 
OxjOxj Ox~ ' 

0u--2 = 0, [2.6b] 
Ox~ 

with boundary conditions 

u~=•~Mljxk at r = l ,  

1 
ui -+ eijxi + ~ ei#ojxk as r -+ ~, 

where p is the pressure divided by 2II/~, e,~ the freestream rate of strain tensor divided by 212, to~ 
the freestream vorticity vector divided by 2tl, II~ the angular velocity of the particle divided by 
212 and r --- (x~x~) ~zz. Also, for a freely rotating cylinder or sphere, II~ = ½toi. Thus, the boundary 
conditions become 

u, = e~jktljXk at r = 1, [2.7a] 

u~ --> e~jxj + •~jk fljxk as r--> oo. [2.7b] 

The scalar quantity fl is defined as 12- (llilli)~n= ½(to,to i)1/2, where fl~ and to; are, respectively, 
the dimensional angular velocity of the particle and the dimensional freestream vorticity vector. 
The quantity 21) can be thought of as a root square average vorticity. It is the quantity 212a by 
which all velocities have been rendered dimensionless. (The case II = 0 is discussed later.) Note 
that I5 = 212. 

The present analysis will be restricted to free stream velocities which are two-dimensional, in 
which case J2, J3 and J, become zero (see [1.1-2]). Thus, the complete velocity distributions for 
both the cylinder and the sphere will contain only one flow parameter, namely J, = L/ I s .  The 
functional dependence of the Nusselt number on this one flow parameter J~ will now be obtained, 
first for an infinitely long cylinder and then for a sphere, both freely rotating in a two-dimensional 
linear flow field. Although still rather specialized, it is felt that the solution to these 
two-dimensional flow problems will be of some interest in that it will give further insight into the 
more complicated case of three-dimensional linear flows. 

3. THE CYLINDER 

In terms of the cylindrical coordinates (r, ~) and the two-dimensional streamfunction tp, 
defined by 

_ 1 a~ a¢ 
u , - - - -  and u ~ -  

r a~ Or ' 
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the Stokes solution, satisfying [2.7] together with the requirement that the net torque on the 
cylinder be zero, is 

~b = -~(r~  -. 1) - - ~ A ( r  - r ,)2 cos 2q~, [3.11 

where A =- ~/2J, (note that 0 <- A - o0). The solution for a simple shear as obtained by Cox et  al. 

(1968) is easily recovered by setting A = 1 in [3.1]. The equation of a streamline may now be 

expressed in the form 

k = r 2 + A r 2 ( 1  - r-  2)2 cos 2~¢, [3.2] 

where k = 1 - 4 0 ,  and the fluid velocity is given by 

u,  = . . . .  A r (  l - r ~)2 sin 2¢, [3.3a] 
r a~ 2 

aO_ 1 1 
u , ~ -  8r  2 r  + - ~ A r ( l - r  ~)cos2~. [3.3b] 

There are two general classes of flows represented by [3.2], corresponding to two ranges of the 

flow parameter A ; and moreover,  the solution to the heat transfer problem is quite different in 
each case. Class I flows (0 -< A < 1) consist of flows having only closed streamlines, while Class II 

flows (1 --- A -< o0) contain both closed and open streamlines. 

All streamlines of Class I flows, including those in the free stream, are closed. This can easily be 

seen by letting r~oo  and rearranging[3.2] to give 

k 
r ~ ~ as r ~ z¢. [3.4] 

1 + A cos 2~ 

This is the equation of a family of ellipses for 0 -< A < 1. Thus, the streamlines represented by 
[3.2] can be thought of as distorted ellipses, with those at infinity being undistorted. In fact, this is 

the situation regardless of the value of the Reynolds number, as long as the flow remains laminar, 
since the streamlines represented by boundary condition [3.4] are always closed provided that 

0 _ < A < I .  
Class II flows, for which 1 -< A -< 0% have both closed and open streamlines (figure 1). The 

case A = 1 corresponds to a simple shear flow, where all streamlines are open except those 

A = 1 L i m i t i n g  S t r e a m l i n e :  k = k c 

I< A<oo 

~ A-1) :kc=1 

Figure 1. Streamlines around a cylinder freely rotating in a linear flow field when A -> 1. 
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contained within the limiting streamline, which are all closed. For the A = 1 flow, which has been 
treated extensively by Cox et al. (1968), this closed streamline region extends to infinity. For the 

case I < A < 0% the closed streamline region is finite (figure 1), with the limiting streamline 
approaching the surface of the cylinder and the closed streamline region becoming smaller as 
A ~ ~. Thus, when A = % the limiting streamline collapses onto the surface of the cylinder and 
no closed streamlines exist anywhere in the flow (this corresponds to pure straining motion or a 
zero vorticity field). The two stagnation points shown in figure 1 can be found by setting u, and u~ 
in [3.3] equal to zero. Denoting the location of these points by (rs, Cs), we find that 

ir 37r 
¢~ 2 ' 2 '  

( A ~lJ4 
r~ = ~- 'S-~]  for 1---A _<oo. 

Moreover, since the stagnation points are on the limiting streamline, we can obtain an expression 
for the limiting streamline k = kc, by substituting rs and ¢s into [3.2]. Thus, 

kc = 2 A - 2 v ' [ A ( A - 1 ) ]  for 1-<A-<~.  [3.5] 

Notice that k¢ = 2 for A = 1 and kc = 1 for A = ~. Equation [3.2] can also be expressed as 

r 2 = k + 2A cos 2¢ + ~/[k 2 + 4A (k - 1) cos 2¢ ] [3.6] 
2(1 + A cos 2¢) 

where the plus sign is chosen in front of the radical since we are concerned only with the closed 
streamline region; i.e. [3.6] is valid only for 1 --- k --- kc and 1 - A --- ~. 

Returning now to the heat transfer problem, we recall that [2.3] simplifies for two-dimensional 
flows and Pe ,> 1 (of. Frankel & Acrivos 1968) to 

d d ~- [F (k )  ~-~ T] =0,  [3.7] 

where k is related to the streamfunction (k - 1 -4tp)  and F(k) is the circulation along a given 
streamline. Note that the temperature T is a constant along the streamline. The associated 
boundary conditions are 

T = 1 at k = 1 (the surface of the cylinder), [3.8a] 

T = 0 at k = kc (the limiting streamline); [3.8b] 

hence, 

fl kF -1 ds 
T = I -  

f l  k~ F -1 ds 
[3.9] 

Then the Nusselt number, as determined from [2.4], becomes 

[_~f  kc dk ]-1 
Nu = L4 J, F(k)J ' [3.10] 
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where the circulation F(k) is given by 

F(k)= (~ (u /  + u~-~r d¢, 
Jo \ u~ / [3.111 

and where u~, u¢ and r are determined as functions of k and ~0 from [3.3] and [3.6]. 

When 0 --- A < 1 every streamline is closed, and so, k~ = oo for this case. Evaluating F(k), as 
k ~oo, from [3.11], we find that 

7rk 
F ( k ) ~ x / ( I _ A 2 ) + O ( 1 )  where 0 - < A < I .  

Hence, the integral in [3.10] has a logarithmic singularity and, therefore, Nu = 0 for 0 - A < 1. Of 
course, this result should have been expected in view of the fact that for two-dimensional closed 
streamline flows heat is confined to an effectively self-contained region surrounding the cylinder, 
i.e. all of the fluid is heated up to T -- 1 (the cylinder surface temperature), and thus, never 
reaches a temperature of zero since no "free stream" region exists to which the heat emanating 
from the cylinder could be transferred by convection. Moreover, this seemingly paradoxical 
result might be expected to remain valid at any Reynolds number, since (for 0-< A < 1) all 
streamlines will be two-dimensional and closed far away from the cylinder owing to the nature of 
the undisturbed flow. 

For 1 -< A -< ~, the integral in [3.10] was evaluated numerically for various values of A, and 
the results are plotted in figure 2. As reported earlier by Frankel & Acrivos (1968), Nu was found 

to equal 5.73 for A = 1. 
As depicted in figure 2, the Nusselt number becomes linear in A as A ~ ~. The appropriate 

asymptotic formula can be obtained by expanding [3.6], the expression for r 2, in reciprocal 
powers of A as A -9 % thereby determining F(k) in powers of (I/A), which is then substituted 

into [3.10] and integrated. It is found that 

N u o 1 5 . 5 8 A - 5 . 9 3 + O ( A  ') as A ~ .  [3.12] 

Agreement between the exact value of Nu as computed numerically from [3.10] and the 
asymptotic Nusselt number from [3.12] is very good even for A as low as 1.2, where the 
asymptotic Nu exceeds the true result by only 16%. Thus, the asymptotic expression [3.12] 
represents a very satisfactory approximation to the true Nusselt number over a wide range of A 

values. 
4 5 - - - - -  I i 

35 
Nu - -15 .58A  - 5  93 +O(A-~) / 

# 3o ", / /  

2~ y 

-Exact Solution 

I0 t / 
L ~ Nu - 5.73 for A - 1 

ol ,oF I l /  
OO IO 2 0  3 0  

A 

Figure 2. The Nusselt number for a heated cylinder freely rotating in a linear flow field. 
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If A -- X/-~J~ = oo then L --- 2II = 0 (see [1.1-2]), and the undisturbed flow corresponds to a pure 

straining motion. Thus, there are no closed streamlines and the Nusselt number is infinite. In fact, 

as Pe-->~, there exists a thermal boundary layer adjacent to the cylinder surface having a 
thickness O(Pe-~/3). Using this fact, it can be shown (Poe, 1975) that when A = 0% 

Nu ~ l.46 Pe ~/3 as pe-->oo. . [3.13] 

Thus, only when J, = oo is the Nusselt number dependent on the P6clet number for the type of 
problems being considered here. 

4. THE SPHERE 

For a sphere in a two-dimensional linear flow in the x2-x3 plane, the Stokes solution satisfying 
[2.7] plus the condition of zero torque is given in Cartesian coordinates by 

1 I) + ~ 8,3x2(A + 5x,x2x3(1 - (8,2x3 + 8~3x2)] u i = ~ 8 , 2 x 3 ( a -  1 ) + ~ a [ "  7 r2) ~ j ,  [4.11 

where again A = X/2J1 (0 -< A --- ~). In terms of the spherical coordinates (r, 0, q~) shown in figure 
3, the velocity distribution then becomes 

u r = ~ A r ( 1  5 -3 3 - ~ r + ~ r -5) sin 2 0 sin 2~, 

1 5 
uo = ~Ar(1 - r -  ) sin 0 cos 0 sin 2~p, 

[4.2a] 

[4.2b] 

u~ = ~ r sin 0 + Ar(1 - r -5) sin 0 cos 2q~, [4.2c] 

which, for A = 1, reduces to the solution for a simple shear as obtained by Cox et al. (1968). It can 
easily be shown (Poe 1975) that the streamlines are formed by the intersection of the two sets of 
surfaces, 

xl = r cos 0 = Crf(r), 

[ (1) x2=rs inOcos~o=+_r f ( r )  E + g ( r ) +  1 -  h(r) 

[4.3a] 

(A # 0),  [4.3b] / 

x l 

x I = r cos  8 

i 
x z = r sin 8 cos ~ I 

i 
x 3 = r s in  8 s in  ~ l 

/ ~  "-. 1 

x2  

Figure 3. Coordinate system for the sphere. 

x 3 
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where C and E are parameters and 

f ~ 5 3 ) ,,3 
f (r)  =- ~r  - 5 + 2 r 2 , 

g(r) ~ f ~  y 3/(y) dy, 

h(r)  -~ f~  y2f(y) dy. 

[4.4a1 

[4.4b] 

[4.4c1 

Furthermore, f, g and h possess the following properties: as r ~ 1, 

1/2 ,~,/3 _ 1)_2,311 + ~ ( r - 1 ) - ~ - [ ( r - 1 ) 2 +  O ( r -  f (r)  ~ \-~1 (r 19 1)3], 

/ 2  \1/3 [1 25 59 1)3], g(r) ~ g(1) - 3 [ ]~)  (r - 1) ''3 - ~-~(r - 1) + ~ ( r  - 1) 2 + O(r - 

/ 2 \ " 3  1) ' /3[l+~(r  - 1 )  14 1)3]; h(r) ~ 31--~) (r - +-~(r - 1)2+ O(r - 

[4.5a] 

[4.5b1 

[4.5c1 

while, as r ~ ~, 

f (r)  r '  5 +-~r ~+O(r  %, [4.6a] 

1 3 5 6 g ( r ) - ~ r  + ~ r  +O(r-8) ,  [4.6b] 

h ( r ) - ~  r2 + 0 (1 )+  O(r '). [4.6c] 

Also, C must lie between - C *  and +C*, where 

C*f(r*)= l with E + g(r*)+ ( 1 - 1 ) h ( r * ) = O .  

The streamlines represented by [4.3] are in general three-dimensional but for the case C = 0 they 

become coplanar, all lying in the x2-x3 plane. 
As in the case of the cylinder, there are two general classes of flows represented by [4.3], 

corresponding to two ranges of the flow parameter A ; and again, the solution to the heat transfer 
problem is quite different in each case. Class I flows (0---A < 1) consist of flows having only 
closed streamlines, while Class II flows (1 -< A - ~) contain both closed and open streamlines. 

Let us first then consider Class I flows for which all streamlines are closed. Here, the 
undisturbed flow consists of a family of elliptic cylinders with the x~ axis as their central axis, i.e. in 
the plane x, = constant, the undisturbed streamlines are a family of ellipses. Letting r ~ ~ in [4.3] 
and rearranging, we find that 

X 2 2 B 
2 +x3 ~ - l + A c o s 2 q ~  as r ~  (A¢0) ,  [4.7] 

which is just the equation of a family of ellipses in the x~ = constant plane. (The constant 
B =- 2AE - C2(1 - A) is positive for any given streamline.) Thus, when 0 < A < 1, the streamlines 
at infinity are undistorted, planar ellipses. In fact, this is the case regardless of the value of the 
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Reynolds number, since the streamlines represented by boundary condition [4.7] are always closed 

provided that 0 < A < 1. 
Class II flows, for which 1 --- A --- oo, contain both closed and open streamlines. The case 

A = 1, which was considered in detail by Cox et al. (1968), corresponds to a simple shear flow at 
infinity and consists entirely of open streamlines except those contained within a three- 

dimensional limiting streamsurface, which are all closed. This closed streamline region extends to 
infinity for A = 1. As in the case of the cylinder, this closed streamline region is finite for 

1 < A < ~, with the limiting streamsurface approaching the surface of the sphere and the closed 

streamline region becoming smaller as A ~ .  And when A = oo, the limiting streamsurface 

collapses onto the surface of the sphere and there are no closed streamlines anywhere in the flow 

(this corresponds to an undisturbed flow having zero vorticity). 

When 1 -< A --- % there is a locus of points (a circle, in fact) in the xl - x3 plane where ur and 
u~ vanish. Denoting the location of these points by (r~, ~ )  and setting Ur and u~ equal to zero in 
[4.2a,c] we find that 

~r 3~r 
~Os = ~ ,  ~ - ,  [4.8a] 

__L_L_A y 
rs \ A - l ]  " [4.8b] 

Also, it is obvious that these points lie on the limiting streamsurface. Denoting the latter by 
E = E ,  we can deduce from [4.3b] that 

Ec= - g ( r s ) - ( 1 - 1 ) h ( r s ) ,  [4.91 

where rs is given by [4.8b]. Notice that when A = 1, Ec = 0 and when A = ~, Ec = - g(1). Also, 

one can easily see that E = -g (1 )  corresponds to the surface of the sphere and that for 
1 --- A < oo all closed streamlines are contained within the space lying between the sphere and the 
limiting three-dimensional stream surface, E = Ec. For E > Ec all streamlines are open. 

Returning now to the heat transfer problem, we note that for the case A = 0 the sphere is 

undergoing pure rotation (Ur and uo are zero); and so, the temperature distribution is identical to 
that for pure conduction, or T = llr. Thus, for A = 0, Nu = 2. An attempt was made to solve the 
heat equation [2.1] for the case A a 1 by means of a regular perturbation expansion about A = 0, 

but no definitive results could be obtained, perhaps owing to the fact that the leading term of the 
expansion, T = l[r, may not represent a uniformly valid approximation to the temperature field as 

A -~ 0. A different approach, therefore, would have been required, but in view of the expected 
difficulties in constructing such a solution and the fact that results already exist for A = 0 and 
A --- 1, it was felt advisable to proceed directly to the class of flows for which 1 -< A ~ oo. 

Let us next consider the heat transfer problem for the case 1 - A --- oo. We note that since the 
temperature along any given closed streamline is a constant in the limit Pe ~ oo, and since E and 
C are constant along a streamline, it is evident that the temperature T is a function only of E and 
C. Furthermore, the heat transfer rate at high Pe is determined primarily by the structure of the 

flow near the surface of the sphere. So, following an analysis similar to that for a simple shear as 
presented by Acrivos (1971), we shall make use of these results, together with [2.3], to obtain an 
equation for the temperature distribution near the surface of the sphere as Pe ~ oo. 

It can be shown first of all (Poe 1975) that the temperature T satisfies the differential equation 

02T 02T 32T OT OT 
al-~-~ + - ~ 2 +  ~-~=0, [4.10] 
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where 

25 al_~,-4{l_[5A.t)2 2_~],3+[A2(~6 714 q2_~44 ) 5 5  . 2 26q ~, O(,.))}. --~-Ar/ +}-~], + 

_~ 5 2 2 ~ . 25 ~ 21 ~. 
a2_=4r/, {[.~ A~ _.~],_ _ [A2(~2 ,q4_~ 8 ~-+~) I_~ A~_+~], + O ( ,  9 ,}, 

a3=_4 2, 6{[A2{75 74 25  5 . }, 

_ 2 , _ , [ I _ [ ~ A . q a + ; ] e 3 + F  2/25 . 25 : 175, a4 -= [A [~-~rt-+~-~r / +2~-~)+-~ " 2 34"1 ~ 

{ [ 2[225 4 75 2 75\ 10 , ~ ]  } a, =--2~` -~ - A k-~n - i~)  + ~ ) - T A ~ - -  ,~+0(,~) , 

w i t h ,  -= (5/6)'/3AA, r/=-(615)C(AA) ~- and A --- E +g(1) = E + 1.047. Strictly speaking, the above 
expressions for the coefficients a, are valid only close to the surface of the sphere; however, in 
order to solve [4.10] we shall resort to an approximate method whereby we shall retain these 
expressions throughout the closed streamline region. Although it is obvious that the 
approximation should become better as additional terms in the coefficients of [4.10] are retained, 
a fairly good estimate of T can still be computed using just the terms that are shown. 

This equation must now be solved with the following boundary conditions, 

T = I  at , = 0  (surface of sphere), [4.11a] 

T = 0 at , = ,.. (limiting streamsurface), [4. l lbl 

T is finite for 0 _ < , _ , . .  and-r/*_< r/_< +r/*. [4.12a] 

where 

"q* = {1 + (~ A - ~ )  (3 + (~56 A'--~A5 + ~ ) s  c10\6 -it 0(,9)}. [4.12b] 

and where ,c = (516)~"A [E, + g(1)]. Using the expression for E., given in [4.8b] and [4.9], ,.) was 
computed numerically for various values of A (1 -< A -< ~) and the results are presented in figure 
4. It can be seen from figure 4 that as A ~ % the limiting streamsurface approaches the surface of 
the sphere ( ,  = 0) as expected. Also, the asymptotic forms of ,3 as A -~ 1 and as A ~ ~ can be 

lo t , ,  ! - - r - -  , , , ~-'~ 
3 _ _  5 a 5 (A-O% 1 i 

0 8  ~A~¢ 6 [ g ( ) ]  [-~ g~ +O(A-,)] as A - -  

A~2 

; E.c, so,ut . . . .  / - - - - x _ _  
I ' j 

O 2 - - J  i i i I I I I 
I 2 4 6 8 ~0 

A 

Figure 4. The critical streamsurface for a freely rotating sphere in a linear flow field when A > 1. 
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computed using [4.5] and [4.6]. These are given by 

as A ~ I ,  ~3~[g(1)]3{1 5(A-1)3/5 } 2 g(1-------~ + O(A - 1) , [4.13] 

as A ~oo, t~3~2o A-1(I + I-~A + O(A-Z)}. [4.14] 

The differential equation [4.10] may be solved in a variety of ways. The technique employed 
here will, up to a point, parallel that used by Acrivos (1971) in solving the related equation for a 
simple shear (A = 1). We can proceed by first assuming that the temperature distribution can be 

expressed as, 

T = 1 - 0 / 1 ( ? ~ ) ~  3 + a 2 ( ' 0 ) ~  6 - a 3 ( ' } ~ ) ~  9-~- • • • , 

which, when substituted in [4.10], leads to the recursion relations 

8 

1 2 5  2 ~ 2 ~{[~-~A (5~ + 2 ~ / -  1 ) -~A' r ]  2 19"1 2d2al a3 = + y~]'0 ~ 2  

[4.151 

[4.161 

25 2 4 2 - [ ~ A  (3'0 +14~/ + I ) - ~ A r / 2 + ~ ] r / d a '  d r  [4.17] 

t, eto - [ ~ A  ('0 -6 r /2 -1 )  + 

Next, we consider the result of truncating the series [4.15] at successively higher terms and 
applying the boundary condition T = 0 at ~ = ~c. Retaining only two terms of [4.15], or 

T = 1 - al('0)~ 3, 

we find that a ( ' =  ~c -3, where a l  (1) denotes the first approximation to a~. If three terms are 
retained, we find that 

Now we obtain a2 ") from [4.16] using the previously computed value of a~, i.e. a(1). This 
calculation gives a second approximation to al, or 

a(2,=~c _ ( ~  2 8 -3 An -~). 

And finally, when four terms are retained in [4.15], we have 

a l  (3) = ~c  - 3  + a 2 ( 2 ) ~ c  3 - -  a3 (1)~C6 ' 

where az ~ is computed from [4.16] using al ~2~ for al and a3'" from [4.17] using a (  ° for a~. So a 
third approximation to a l is given by 

a1(3) = ~c-3 _ (~ 2 8 An  - ~ ) - [ 2 ~ 8  A2(5'04+ 6'02-j- 1 ) - ~  A~2q-4]~c 3. 
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From [2.5], it is easy to show that the Nusselt number is 

Nu =3 c~,(~) dr/; 
I 

thus, the first three approximations to Nu become 

Nu'"  = 6,, ~. [4.18] 

Nu~2' = 6'c 3 - ( ~ A - ~ ) ,  [4.19] 

Nu~3' = 6" 3 - ( ~  A - ~ ) - ( ~ 2  A 2 - ~  A + ~ )  ''3" [4.20] 

Therefore, to O(,,.~), the Nusselt number is given in the limit of large Pe and for I --- A -< ~ by 

N u  =6,,. 3 { 1 - ( 5 A - ~ ) , . , 3 - ( ~ 2 A ~  10 O 9 - - ~ a  + 4 ) ' c  6+ (s%)}, [4.21] 

if the Reynolds number is sufficiently small for inertia effects to be negligible. 
Table 1 gives the first three approximations to the Nusselt number using [4.18], [4.19] and 

Table 1. Approximate and estimated values of N u  for a sphere when A -> 1 

A 

N u  ~ ' ~ N u  ~2~ N l l  t3 ~ Best estimate of 
computed from computed from computed from true value of N u  

[4.18] [4.19] [4.20] (see text) 

1.00 6.27 9.11 8.39 8.9 
1.04 8.41 11.1 10.6 11.0 
1.07 9.59 12.2 11.7 12.1 
1.13 11.6 14.1 13.5 13.9 
1.20 13.6 16.0 15.4 t5.8 
1.40 19.0 20.8 20.2 20.6 
1.70 26.5 27.6 26.9 27.3 
2.00 33.9 34.2 33.4 33.9 
3.00 58.0 55.8 54.4 54.7 

t0.00 224.0 205.0 200.0 200.0 

[4.20] with selected values of A (1 -< A -< o~). Shown in the last column of Table 1 are the best 
estimates of the true values of Nu based on the first three approximations. For each A in table 1, 
this estimate was found by plotting the first three approximations vs I[M, where M is the number 
of the iteration, and graphically extrapolating. It is interesting to note that the values computed 
from Nu ~2~ [4.19] agree quite well with the last column of numbers given in table I, except 
possibly for very large values of A. These estimates of Nu are plotted in figure 5 for A -> 1. It is 
seen here that Nu approaches asymptotically a straight line as A ~ o~. A good estimate of the 
asymptotic form of this line can be found by substituting [4.14] into [4.21]. This gives 

N u ~ 2 0 . 7 A - 7 . 0 + O ( A )  ~ as A ~ .  [4.22] 

Again, as in tlqe case of the cylinder, the asymptotic expression for Nu as A-~ ~ remains 
accurate even for as low a value of A as 1.2, where [4.22] overestimates the true value of Nu by 

only 13%. 
If A ~- X/2 J, -- ~, then I5 ---- 211 = 0, and the undisturbed flow becomes irrotational. In fact, 

there are no closed streamlines and thus, the Nusselt number is infinite. For this case, as Pe ~ ~, 
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Figure 5. The Nusselt number for a heated sphere freely rotating in a linear flow field when A --- 1. 

there exists a thin thermal boundary layer O(Pe -~/3) in thickness next to the surface of the 
sphere. It can be shown (Poe 1975) that when A = ~, 

Nu --> 1.60Pe m as Pe -->oo. [4.23] 

Thus, as in the case of the cylinder, the Nusselt number is a function of the P6clet number only 
when Jl = oo (or/5 = 0), if the Reynolds number is sufficiently small for inertia effects to be 
neglected. 
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